[1]刘想.微生物燃料电池的研究现状及其应用前景[J].镇江高专学报,2018,31(01):44-48.
 LIU Xiang.Research status and application prospect for microbial fuelcells[J].,2018,31(01):44-48.
点击复制

微生物燃料电池的研究现状及其应用前景
()
分享到:

《镇江高专学报》[ISSN:/CN:]

卷:
31
期数:
2018年01期
页码:
44-48
栏目:
科技研究与开发
出版日期:
2018-03-05

文章信息/Info

Title:
Research status and application prospect for microbial fuelcells
文章编号:
1008-8148(2018)01-004
作者:
刘想
镇江高等专科学校 医药与化材学院,江苏 镇江212028
Author(s):
LIU Xiang
School of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang 212003, China
关键词:
微生物燃料电池电极材料产电性能
Keywords:
MFCs electrode materials electricity performance
分类号:
TM911.45
文献标志码:
A
摘要:
微生物燃料电池(Microbial fuel cells,MFCs)技术作为一种节能型污水处理新技术,能够氧化降解各类有机污染物,并同步产生清洁电能,在污废水处理、生物传感器、生态修复等领域具有发展潜力。简述MFCs 的基本结构、分类及工作原理,详细介绍MFCs 研究现状、研究热点、应用领域,着重分析石墨烯基电极材料对 MFCs 产电性能的影响,总结并展望MFCs 应用前景。
Abstract:
Microbial Fuel Cells(MFCs)is a new wastewater treatment technology, which combines organic pollutants degradation and direct bioelectricity generation. MFC exhibits vast potential application in the areas as waste water treatment, biosensing and bioremediation. This article focuses on the research status, the research hotspot and application field of MFCs and analyzes their impact factors of graphenebased electrode material on electricity generation of MFCs. Finally, application prospects of MFCs are summarized and prospected.

参考文献/References:

[1] 强琳,袁林江,丁擎.微生物燃料电池处理生活污水产电特性研究[J].水资源与水工程学报,2010,21(4):51-54.
[2] 施冬艳.过表达甲基转移酶基因对微生物燃料电池性能的影响[D].南京:南京工业大学,2013:1-19.
[3] FENG C,LI F,LIU H,et al. A dualchamber microbial fuel cell with conductive filmmodified anode and cathode and its application for the neutral electroFenton process[J]. Electrochemical Acta,2010,55(6):2048-2054.
[4] AELTERMAN P, RABAEY K, PHAM H T, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J].Communications in Agricultural & Applied Biological Sciences,2006,71(1):63-66.
[5] 曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究[J].环境科学学报,2006,26(8):1252-1257.
[6] LIU H, LOGAN B E. Electricity generation using an aircathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science & Technology,2004,38(14):4040-4046.
[7] OH S E, LOGAN B E. Voltage reversal during microbial fuel cell stack operation[J].Journal of Power Sources,2007,167(1):11-17.
[8] HE Z, MINTEER S D, ANGENENT L T. Electricity generation from artificial wastewater using an up flow microbialfuel cell[J]. Environmental Science & Technology,2005,39(14):5262-5267.
[9] MOON H, CHANG I S, JANG J K, et al. Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation[J].Biochemical Engineering Journal,2006,27(1): 59-65.
[10] 王维大,李浩然,冯雅丽,等.微生物燃料电池的研究应用进展[J].化工进展,2014,33(5):1067-1076.
[11] RABAEY K, VERSTRAETE W. Microbial fuel cells:novel biotechnology for energy generation[J].Trends in Biotechnology,2005,23(6):291-298.
[12] GORBY Y A, YANINA S, MCLEAN J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR1 and other microorganisms[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(30):11358-11363.
[13] RABAEY K, BOON N, HFTE M, et al. Microbial phenazine production enhances electron transfer in biofuel cells[J].Environmental Science & Technology,2005, 39(9):3401-3408.
[14] REGUERA G, MCCARTHY K D, METHA T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005,435(7045):1098-1101.
[15] 宝玥,吴霞琴.生物燃料电池的研究进展[J].电化学,2004,10(1):1-8.
[16] POTTER M C. Electrical effects accompanying the decomposition of organic compounds[J].Proceedings of the Royal Society B Biological Sciences,1911,84(571): 260-276.
[17] DOOHYUN P,ZEIKUS J G. Electricity generation in microbial fuel cells using neutral red as an electronophore[J].Applied & Environmental Microbiology,2000,66(4):1292-1297.
[18] ROLLER S D, BENNETTO H P, DELANEY G M, et al. Electrontransfer coupling in microbial fuel cells: comparison of redoxmediator reduction rates and respiratory rates of bacteria[J].Journal of Chemical Technology & Biotechnology Biotechnology,1984,34(1):3-12.
[19] DELANEY G M, BENNETTO H P, MASON J R, et al. Electrontransfer coupling in microbial fuel cells erformance of fuel cells containing selected microorganismmediatorsubstrate combinations[J]. Journal of Chemical Technology & Biotechnology, 2010, 34(1): 13-27.
[20] LOGAN B E. Peer reviewed:extracting hydrogen and electricity from renewable resources[J].Environmental Science & Technology, 2004,38(9):160A-167A.
[21] KIM B H, IKEDA T, PARK H S, et al. Electrochemical activity of an Fe(III)reducing bacterium,Shewanella putrefaciens IR1,in the presence of alternative electron acceptors[J]. Biotechnology Techniques,1999,13(7):475-478.
[22]METHE B A, NELSON K E, EISEN J A, et al. Genome of geobacter sulfurreducens:Metal Reduction in Subsurface Environments[J].Science,2003,302(5652):1967-1969.
[23] REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045): 1098-1101.
[24] OH S E, LOGAN B E. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies[J].Water Research,2005,39(19):4673-4682.
[25] PEIXOTO L, MIN B, MARTINS G, et al. In situ microbial fuel cellbased biosensor for organic carbon[J].Bioelectrochemistry,2011,81(2): 99-103.
[26] 詹亚力,王琴,张佩佩,等.微生物燃料电池影响因素及作用机理探讨[J].高等学校化学学报,2008,29(1):144-148.
[27] 王鑫,冯玉杰,曲有鹏,等.温度对啤酒废水微生物燃料电池产电性能的影响[J].环境科学,2008(11):3128-3132.
[28] MIN B, ROMN O B, ANGELIDAKI I. Importance of temperature and anodic medium composition on microbial fuel cell(MFC)performance[J]. Biotechnology Letters,2008,30(7): 213-1218.
[29] 赵磊,冯泽胜,张钧,等. 微生物燃料电池性能的影响因素研究[J].中国农学通报,2008,24(11):97-102.
[30] PICIOREANU C,HEAD I M,KATURI K P,et al. A computational model for biofilmbased microbial fuel cells[J]. Water Research,2007,41(13):2921-2940.
[31] LI F X, SHARMA Y, LEI Y, et al. Microbial fuel cells:the effects of configurations,electrolyte solutions,and electrode materials on power generation[J]. Applied Biochemistry and Biotechnology,2010,160(1):168-181.
[32] 黄霞,范明志,梁鹏,等.微生物燃料电池阳极特性对产电性能的影响[J].中国给水排水,2007,23(3):8-13.
[33] WILKINSON S. “Gastrobots”Benefits and challenges of microbial fuel cells in food powered robot applications[J].Autonomous Robots,2000,9(2):99-111.
[34] JIANG D Q, LI B K. Granular activated carbon singlechamber microbial fuel cells (GAC-SCMFCs):a design suitable for largescale wastewater treatment processes[J]. Biochemical Engineering Journal,2009,47(1-3):31-37.
[35] HONG S W, KIM J, YONG S C, et al. Field experiments on bioelectricity production from lake sediment using microbial fuel cell technology[J]. BulletinKorean Chemical Society,2008,29(11):2189-2194.
[36] KIM M, YOUN S M, SHIN S H, et al. Practical field application of a novel BOD monitoring system[J].Journal of Environmental Monitoring Jem,2003,5(4):640-643.
[37] BOND D R, HOLMES D E, TENDER L M, et al. Electrodereducing microorganisms that harvest energy from marine sediments[J].Science,2002,295(5554):483-485.

备注/Memo

备注/Memo:
收稿日期: 2017-06-23
基金项目:镇江重点研发计划(现代农业)资助项目(NY2016022)
作者简介: 刘想(1986—),男,江苏句容人,讲师,博士,主要从事新型能源开发和利用研究。
更新日期/Last Update: 2018-03-08